Your Ref．：TPB／A／YL－ST／600
Our Ref．：21／707／L05
May 3， 2022
Secretary
Town Planning Board
15／F．，North Point Government Offices
333 Java Road，North Point
Hong Kong
By Hand

Dear Sir／Madam，

## Compliance with Approval Condition（e）

Temporary Shop and Services and associated Filling and Excavation of Land for a Period of 3 Years in＂Other Specified Uses＂annotated＂Service Stations＂Zone at Lots 733SF（Part），737RP（Part），738RP，741（Part），742RP（Part），744RP（Part）and Adjoining Government Land in DD99，San Tin，Yuen Long，New Territories （Application No．A／YL－ST／600）

With reference to the captioned application，we submit herewith 3 copies of the Drainage Proposal for the compliance of approval condition（e）．

Should you have any queries or require further information，please feel free to contact the undersigned at 24010173.

Yours faithfully，
For and on behalf of
Top Bright Consultants Ltd．


Adam Chow
Encl．
c．c．DPO／FS\＆YLE－Attn．：Mr．LUNG Ching Ho，Otto（By Email－ochlung＠pland．gov．hk） Smart Union Motors（Asia）Company Limited（the Applicant）

## Drainage Proposal in compliance with

Planning Application No．A／YL－ST／600 Approval Condition（e） for Proposed Temporary Shop and Services and associated Filling and Excavation of Land for a Period of 3 Years in＂Other Specified Uses＂annotated＂Service Stations＂Zone， Lots 733 SF（Part）， 737 RP（Part）， 738 RP（Part）， 741 （Part）， 742 RP（Part）and 744 RP（Part）in DD99 and Adjoining Government Land，San Tin，Yuen Long，New Territories
（HT 21094）

May 2022

何田顧問工程師有限公司

## HO TIN \＆ASSOCIATES

CONSULTING ENGINEERS LIMITED
香港九龍官溒鴻圆道26號威登中心12樌1201－3室電話：2895 2238 蒖文傅真：28908872 電賏：admin＠htotin．com．nk Rooms 1201－3，Westin Centre， 26 Hung To Road，Kwun Tong，Kowloon，Hong Kong Tel： 28952238 Fax： $28908872 \quad$ E－mail ：admin＠hotin．com．hk

| Checked \＆approved by | K C LEE | Lac |
| :--- | :--- | :--- |


| CE/MN, DSD's Comments given via PlanD's letter dated 6 April 2022 | Responses |
| :---: | :---: |
| We consider that the drainage proposal submitted by the applicant is unacceptable from drainage operation and maintenance point of view. The applicant shall duly address our comments below and re-submit the proposal for our further review: | Noted. |
| (i) An underground drain is proposed to be constructed within the government land to divert the surface runoff collected from the Site to the existing watercourse. Since the underground drain will solely serve the proposed development and there is no existing drainage system maintained by DSD in the vicinity, DSD will not take up the maintenance of the proposed drainage facilities, including the proposed underground drainage pipe and the outlet; | Noted and no objection. |
| (ii) Please advise whether the underground drain will collect the runoff from other sites in the vicinity later. As the underground drain will be constructed on government land, comment from the relevant departments (e.g. LandsD) on the drainage proposal should be sought; | It will be subject to the Government's approval when the underground drain will collect the runoff from other sites in the vicinity later. It was stipulated in Section 6.1 and 7.3 that 'consent of laying the proposed drains within Government lands will be sought prior to construction of the proposed drainage'. |
| (iii) Section 5.1.1 refers. The changes in paving condition, the drainage flow path and drainage impact to the adjacent areas before and after the proposed development should be presented; | There is no change in paving condition, the drainage flow path and drainage impact to the adjacent areas before and after the proposed development. A corresponding statement is added into Section 5.1.1. |


| CE/MN, DSD's Comments given via PlanD's letter dated 6 April 2022 | Responses |
| :---: | :---: |
| (iv) Table 6.4 refers. Sufficient freeboards, i.e. min . 300 mm , should be allowed for the proposed drainage system in accordance with Section 6.5 of the latest version of Stormwater Drainage Manual; | Table 6.4 is amended and new cover levels are proposed such that sufficient freeboards, i.e. min. 300 mm , are allowed for the proposed drainage system in accordance with Section 6.5 of the latest version of Stormwater Drainage Manual. |
| (v) Section 6.4 and Appendix refer. The drainage calculation for the 50 -year rainfall event is missing in the Appendix; | Drainage calculation for the 50 -year rainfall event is added in the Appendix in this resubmission. |
| (vi) Drawing No. HT21094/DD/01 refers. As no internal drains are provided within the Site, please demonstrate how the catchment areas for the peripheral drains are determined; | The ground levels of the subject site slope downward from the centre toward the subject site boundary. The catchment areas for the peripheral channels are determined according to the apportionment of the sloping grounds with respect to each channel. In order to cater for the effect of existence of buildings encroaching upon more than one catchment, the concerned catchments are summed up and conservatively adopted as the catchment of the corresponding channels at the most upstream. Calculations in the Appendix are amended accordingly. |
| (vii) The proposed drainage works should neither obstruct overland flow nor adversely affected any existing natural streams, village drains, ditches and the adjacent areas and free flow condition of all public drainage should be maintained at all time in order to avoid the risk of flooding or ponding; and | Agreed and will strictly follow. Peripheral channels with appropriate sizes are proposed and will be constructed to collect all overland flow across the subject Site boundary and to convey to the existing watercourse at the downstream. |

## CE/MN, DSD's Comments given via PlanD's letter dated 6 April 2022 <br> Responses

(viii) The applicant is required to ensure that no debris, silt and sediments or Agreed and will strictly follow.

## CONTENT

1. Background
2. Objectives and Scope of this Report
3. The Subject Site
4. Existing Drainage Conditions of the Subject Site
5. Approach and Methodology
6. Proposed Drainage Works
7. Conclusion and Recommendations
8. Design Drawings attached to this Report

## FIGURES

Figure 1 - Site Location Plan
Figure 2 - Catchment Areas \& Flow Directions of Surface Runoff
Figure 3 - Site Drainage Layout Plan for The Boxes Shopping City

## APPENDICES

## Appendix - Hydraulic Calculations

## DRAWINGS

Dwg. No.
HT21094/ DD/01 - Proposed Drainage Layout Plan
HT21094/DD/02 - Details of Standard Terminal Manhole Type T2_1
HT21094/DD/03 - Pipe Laying, Standard Manhole Type E1, Surface Channel \& Catch Pit Details

## 1. Background

1.1 Ho Tin \& Associates Consulting Engineers Limited (HTA) was appointed by the applicant to prepare a Drainage Proposal in compliance with the planning approval condition (e), i.e. the submission of a drainage proposal to the satisfaction of the Director of Drainage Services or of the Town Planning Board as stipulated in Town Planning Board's letter ref. TPB/A/YL-ST/600 dated 14 January 2022 for the Proposed Temporary Shop and Services and associated Filling and Excavation of Land for a Period of 3 Years in "Other Specified Uses" annotated "Service Stations" Zone, Lots 733 SF (Part), 737 RP (Part), 738 RP (Part), 741 (Part), 742 RP (Part) and 744 RP (Part) in DD99 and adjoining Government land, San Tin, Yuen Long, New Territories.

## 2. Objectives and Scope of this Report

2.1 The objective of this report is to propose drainage works in compliance with the planning approval condition (e) as stipulated in the Town Planning Board's letter ref. TPB/A/YL-ST/600 dated 14 January 2022.
2.2 The scope of this report includes:
(i) identifying existing drainage conditions of the subject area;
(ii) evaluating flooding susceptibility and potential drainage impacts on the subject area; and
(iii) proposing necessary drainage works.

## 3. The Subject Site

3.1 The subject site of an area of about $7,858 \mathrm{~m}^{2}$ is located on the southern side of San Tin Tsuen Road and adjacent to an existing access road front of Tung Chun Wai. It comprises of Lots 733 SF (Part), 737 RP (Part), 738 RP (Part), 741 (Part), 742 RP (Part), 744 RP (Part) in DD99, and adjoining Government land, San Tin, Yuen Long, N.T. A Site Location Plan is shown on Figure 1.

## 4. Existing Drainage Conditions of the Subject Site

4.1 The subject area is located within a fluvial-tidal zone in San Tin and was identified as flood prone area due to its low lying nature such that stormwater within the subject area and its adjacent areas could not effectively be drained by gravity to the primary drainage network.
4.2 However, after the government completed the river training at the Shenzhen River network, flooding risk in the area was significantly reduced. Besides, the government also completed village flood protection scheme at San Tin in 1999. Under the scheme, San Tin Stormwater Pumping Station was constructed at about 200 m to the west of the subject site. The pumping station will pump stormwater from within the low lying area to an outside channel during rainstorms such that the area will be protected from flooding. Flow directions of the surface runoff and catchment boundaries within the subject area is shown in Figure 2.
4.3 With reference to the "Stormwater Drainage Manual", the subject area would be classified as 'Village Drainage including Internal Drainage System under a Polder Scheme'. Therefore, the subject area should have been protected from minimum 10year flood level return periods after the government completed the river training works and village flood protection scheme at San Tin.
4.4 At present, there is no drainage within the subject site.

## 5. Approach and Methodology

### 5.1 Catchment Areas

5.1.1 Flow paths of the surface runoff over the subject areas are identified with respect to the spot levels of the government survey sheet. Runoff from the land to the east of Castle Peak Road - San Tin are intercepted and conveyed to the main drainage channel (constructed by the government under PWP Item 73CD) next to Lok Ma Chau Road. Existing flow paths in the vicinity of the subject site are as indicated in Figure 2. At present, the Site is hard paved. The paving condition of the Site will remain unchanged after the development. There would be no change in the flow paths of the adjacent areas before and after the proposed development. Overland
flows within the Site will be properly managed into engineering drainage after the proposed development. Since the proposed development basically would not disturb the existing drainage conditions, it would not incur any drainage impact onto the adjacent areas.
5.1.2 According to the BD approved Site Drainage Layout Plan for the proposed development of a temporary commercial development (hereinafter called "The Boxes Shopping City") at Lot 661R.P., 669R.P., 674R.P., 733R.P. in DD9a, Yuen Long as shown in Figure 3, surface runoff from the southern part of The Boxes Shopping City which is $24,742 \mathrm{~m}^{2}$, is conveyed and flows into the discharge point B'2 and then to the existing 1200 dia. pipe at the downstream.
5.1.3 In general, there would be no surface runoff flowing into the subject site from the surroundings. Therefore, the total catchment area of the subject site is about $7,859 \mathrm{~m}^{2}$. The ground levels of the subject site slope downward from the centre toward the subject site boundary. The catchment areas for the peripheral channels are determined according to the apportionment of the sloping grounds with respect to each channel. In order to cater for the effect of existence of buildings encroaching upon more than one catchment, the concerned catchments are summed up and conservatively adopted as the catchment of the corresponding channels at the most upstream. Hydraulic calculations of the proposed drainage system of the subject site are included in the Appendix in this drainage submission.

### 5.2 Design Return Periods and Rainstorm Profile

5.2.1 Assessment criteria are based on the recommendation set out in the Stormwater Drainage Manual (SDM) issued by DSD. Since the drainage systems of the subject is classified as 'Village Drainage including Internal Drainage System under a Polder Scheme', the subject area is now under protection from minimum 10-year flood level return periods.
5.2.2 With reference from Table 11 in the "Stormwater Drainage Manual", the drainage conditions of the subject area under the following two cases shall be checked:
Case I-10-year rain +2 -year sea level
Case II - 2-year rain + 10-year sea level
5.2.3 The corresponding runoffs under rainfall intensity for various return period are worked out with reference to Rational Method and Brandy-Williams method is used in calculation of the time of concentration. A uniformly distributed rainfall with an intensity is determined by the Intensity-Duration-Frequency. With referenced to GEO TGN 30 (2018 version), the rainfall profiles are derived based on the following equation:

$$
\mathrm{i}=\frac{\mathrm{a}}{(t+b)^{\mathrm{c}}}
$$

$\begin{aligned} \text { where i } & =\text { mean rainfall intensity }(\mathrm{mm} / \mathrm{hr}) \\ \mathrm{t} & =\text { duration time of concentration }(\mathrm{min}) \\ \mathrm{a}, \mathrm{b}, \mathrm{c} & =\text { storm constants given in Table } 5.2 \text { below }\end{aligned}$

Table 5.2 Storm Constants for Different Return Periods

| Return Period (years) | 2 | 10 | 50 | 200 |
| :---: | :---: | :---: | :---: | :---: |
| a | 480 | 640 | 800 | 892 |
| b | 4 | 4 | 4 | 4 |
| c | 0.41 | 0.41 | 0.41 | 0.41 |

### 5.3 Design Sea Level

5.3.1 With reference to the figures of Tsim Bei Tsui (the nearest location) in Table 8 in the "Stormwater Drainage Manual (2018 version)", the Design Extreme Sea Level at 2 -year and 10 -year return period would be +3.07 mPD and +3.51 mPD respectively. In order to incorporate the effect of climate change in the drainage design, according to DSD's Stormwater Drainage Manual Table 28, the sea level rise for mid-2 ${ }^{\text {st }}$ Century (2041-2060) shall be 0.23 m . Thus, the revised Design Extreme Sea Level at 2 -year and 10 -year would be +3.30 mPD and +3.74 mPD respectively.

### 5.4 Roughness

5.4.1 In this assessment, it is assumed that the existing and new proposed drains are at "Normal" condition. Hence, a value of 0.6 mm for roughness $\mathrm{k}_{\mathrm{s}}$ has been adopted with respect to Table 14 in SDM.

### 5.5 Velocity Design

5.5.1 For design of new proposed drains, sediment inside the pipeline system is allowed in accordance with paragraph 9.3 of SDM which suggests allowing $5 \%$ reduction in flow area if the gradient is greater than 1 in 25 or $10 \%$ reduction in flow area in other cases.

## 6. Proposed Drainage Works

6.1 In order to prevent surface runoff from the subject site directly flowing across the site boundary onto the existing adjacent access road, peripheral channels are proposed to be constructed within the subject site. The surface runoff collected in the channels will be discharged via a terminal manhole into a proposed underground drain which will convey the flow into an existing watercourse to the west of the subject site. The proposed underground drain will be constructed within Government lands. Consent of laying the proposed drains within Government lands will be sought prior to construction of the proposed drainage.
6.2 The required sizes of the proposed U-channels and underground drainage of the subject development are shown in HT21094/DD/01 and the hydraulic calculations are enclosed in the Appendix.
6.3 Based on the hydraulic assessment results, the estimated water levels at the catchment discharge points with proposed drainage are determined. Since all pipes have sufficient spare capacity, no water backup will occur at the upstream under rainstorms of 2-year and 10-year return periods. The following hydraulic results at the subject site are anticipated:

Table 6.4 Estimate Water Levels with Proposed Drainage

|  |  | Case I <br> 10-year rain + 2-year sea <br> level (+3.30mPD) |  | Case II  <br> 2-year rain + 10-year sea  <br> level (+3.74mPD)  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Node No. <br> [1] | Ground <br> Level <br> (mPD) | Water Level <br> [2] <br> (mPD) | Freeboard <br> [3] <br> (m) | Water Level <br> [2] <br> (mPD) | Freeboard <br> $\left[{ }^{[3]}\right.$ <br> (m) |
| 1.1 | 4.30 | 3.56 | 0.74 | 4.00 | 0.30 |
| CP1.2 | 4.30 | 3.37 | 0.93 | 3.81 | 0.49 |
| CP1.3 | 4.30 | 3.34 | 0.96 | 3.78 | 0.52 |
| CP1.4 | 4.30 | 3.46 | 0.84 | 3.90 | 0.40 |
| CP1.5 | 4.30 | 3.55 | 0.75 | 3.99 | 0.31 |
| CP1.6 | 4.30 | 3.39 | 0.91 | 3.83 | 0.47 |
| CP1.7 | 4.20 | 3.33 | 0.97 | 3.77 | 0.53 |
| 2.1 | 4.30 | 3.40 | 0.90 | 3.84 | 0.46 |
| CP2.2 | 4.30 | 3.40 | 0.90 | 3.84 | 0.46 |
| CP2.3 | 4.30 | 3.36 | 0.94 | 3.80 | 0.50 |
| MH TM | 4.30 | 3.50 | 0.80 | 3.94 | 0.36 |
| MH1 | 4.20 | 3.46 | 0.74 | 3.90 | 0.30 |
| MH2 | 4.20 | 3.33 | 0.87 | 3.77 | 0.43 |

[1] - Node layout numbers refer to Drawing Nos. HT21094/DD/01
[2] - Water Level = Invert Level at upstream + Extreme Sea Level - Invert Level at downstream
[3] - Negative freeboard indicates an occurrence of flooding.
6.4 Since the existing ground levels of the subject site are approximately between +4.20 mPD and +4.30 mPD , the subject site would not be flooded under Case I and Case II. It is noted that the subject site is located in a fluvial-tidal zone and the extreme sea level is the major contributory factor that leads to high water level. The flooding will be further prohibited if the nearby San Tin Stormwater Pumping Station was operated during high tide.
6.5 Nevertheless, the proposed drains are designed to have sufficient hydraulic capacity to withstand 50 and 200-year rainfalls as shown in the Appendix.

## 7. Conclusion and Recommendations

7.1 The subject area is located within a fluvial-tidal zone in San Tin. River training works and village flood protection scheme of the area were completed by the government some years ago. The water levels at the subject area are now regulated by San Tin Stormwater Pumping Station at about 200m to the west of the subject site. San Tin Stormwater Pumping Station would be operated when the water level at the flood water storage pond is high.
7.2 The subject development will construct a new internal drainage system consisting of peripheral 300 mm to 750 mm U channels and a terminal manhole which will discharge its flow into a proposed 900 mm dia. underground drain which will discharge its flow into an existing watercourse to the further west. The owners of the application site would bear the costs of construction of the proposed drainage works including those outside the subject application site.
7.3 The proposed underground drain will be constructed within Government lands. Consent of laying the proposed drains within Government lands will be sought prior to construction of the proposed drainage.
7.4 In conclusion, the proposed development with implementation of the proposed drainage works will not cause any adverse drainage impacts onto the area.

## 8. Design Drawings attached to this Report

| Drawing No. | Title |
| :--- | :--- |
| HT21094/DD/01 | Proposed Drainage Layout Plan |
| HT21094/DD/02 | Details of Standard Terminal Manhole Type T2_1 |
| HT21094/DD/03 | Pipe Laying, Standard Manhole Type E1, Surface <br> Channel \& Catch Pit Details |





## APPENDIX 1

Hydraulic Calculations

## Assessment of Hydraulic Capacities of the Drainage System for 1 in 2 year design return period

Using Rational Method
Design Flow $\quad=\quad 0.278 \mathrm{CiA} \mathrm{m}^{3} / \mathrm{s} \quad$ for grassland (heavy soil) - steep, $\mathrm{C}=0.35$
for concrete surface, $\mathrm{C}=0.95$
Design Mean Velocity $=\mathrm{R}^{16 /} /\left(\mathrm{RS}_{\mathrm{S}}\right)^{1 / 2} \quad$ and $\quad \mathrm{n}=0.013 \quad$ for concrete pipe with good surfac
Using Gumbel Solution in frequency analysis
Rainfall intensity
$=$
$\mathrm{a} /\left(\mathrm{t}_{\mathrm{t}}+\mathrm{b}\right)^{\text {a }}$ where $\quad \mathrm{a}=480 \quad \mathrm{~b}=4 \quad$ and $\mathrm{c}=\quad 0.41$ in 2 year design return period

Using colebrook's White Equation (for pipe flow)
$\mathrm{V}=-\mathrm{Sqt}(8 \mathrm{gDs}) \times \log \left[\left(\mathrm{k}_{\mathrm{s}} / 3.7 \mathrm{D}\right)+(2.51 \mathrm{v} / \mathrm{D} \times \operatorname{Sqt}(2 \mathrm{gDs}))\right]$
Parameters Input
$\begin{array}{ccc}\mathrm{k}_{\mathrm{s}}(\mathrm{mm})= & 0.6 & \mathrm{k}_{\mathrm{s}}(\mathrm{m})=0.0006\end{array}$
$\mathrm{g}\left(\mathrm{m}^{2} \mathrm{~s}\right)=\quad 9.81$

| USCP/USMH | DSCPIDSMH\|| | USGL | DSGL | USIL | DSIL | INVERT DIFF. | $\underset{(\mathrm{m})}{\mathrm{LENGTH}}$ | $\begin{aligned} & \hline \text { SLOPE } \\ & \mathrm{s} \end{aligned}$ | $\begin{aligned} & \text { SLOPE } \\ & 1 \mathrm{IN} \end{aligned}$ | $\begin{gathered} \mathrm{t}_{\mathrm{o}} \\ (\mathrm{~min}) \end{gathered}$ | $\underset{\substack{\left.\mathrm{t}_{\mathrm{c}}=\mathrm{m}_{\mathrm{j}}\right) \\(\min )}}{ }$ | $\begin{aligned} & \text { RAINFALL } \\ & \text { INTENSITY } \\ & (\mathrm{mm} / \mathrm{hr}) \end{aligned}$ | $\begin{aligned} & \text { RAINFALL INTENSITY } \\ & \text { INCLUDDN EFFECT } \\ & \text { OF CLIMATE CHANGE } \\ & (\mathrm{mm} / \mathrm{hr}) \end{aligned}$ | $\begin{aligned} & \text { RUNOFF } \\ & \text { COEF. } \\ & \text { C. } \end{aligned}$ | SUB- CATCHMENT AREA $\left(m^{2}\right)$ | $\begin{gathered} \text { EFF. } \\ \text { AREA } \\ \left(\mathrm{m}^{2}\right) \end{gathered}$ | $\begin{gathered} \hline \text { CUM. } \\ \text { EFF: } \\ \text { AREA } \\ \left(\mathrm{m}^{2}\right) \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { DESIGN } \\ \text { FLOW } \\ \left(\mathrm{m}^{3} \mathrm{~s}\right) \end{gathered}$ | $\begin{aligned} & \text { SIZE } \\ & (\mathrm{mm}) \end{aligned}$ | $\begin{aligned} & \text { TyCe } \\ & \text { Tyy } \end{aligned}$ | $\begin{aligned} & \mathrm{V} \mathrm{VEL} \\ & (\mathrm{~m} / \mathrm{s}) \end{aligned}$ | $\begin{gathered} \text { FAPAW } \\ \text { CAPAITY } \\ \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{gathered}$ |  | $\begin{aligned} & \text { SPARE } \\ & \text { CAPAITY } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$ | $\square$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Branch from AYL-STT/559 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.1 | CP1.2 | 4.30 | 4.30 | 3.97 | 3.67 | 0.26 | 65.00 | 0.004 | 250 | 2.00 | 2.89 | 217.57 | 240.19 | 0.95 | 1,003 | 953 | 953 | 0.064 | 300 | UC | 1.22 | 0.22 |  | 0.155 |  | OK! |
| CP1.2 | CP1.3 | 4.30 | 4.30 | 3.67 | 3.60 | 0.07 | 17.00 | 0.004 | 250 | 2.89 | 3.12 | 214.66 | 236.98 | 0.95 | 0 | 0 | 953 | 0.063 | 300 | uc | 1.23 | 0.25 |  | 0.183 |  | ок! |
| CP1.3 | CP1.4 | 4.30 | 4.30 | 3.60 | 3.56 | 0.04 | 10.00 | 0.004 | 250 | 3.12 | 3.25 | 213.02 | 235.17 | 0.95 | 0 | 0 | 953 | 0.062 | 300 | uc | 1.24 | 0.26 |  | 0.200 |  | ок! |
| CP1.4 | CP1.5 | 4.30 | 4.30 | 3.56 | 3.35 | 0.16 | 40.00 | 0.004 | 250 | 3.25 | 3.78 | 206.99 | 228.51 | 0.95 | 779 | 740 | 1,693 | 0.108 | 300 | uc | 1.27 | 0.35 |  | 0.241 |  | ок! |
| CP1.5 | CP1.6 | 4.30 | 4.30 | 3.35 | 3.10 | 0.25 | 70.00 | 0.004 | 275 | 3.78 | 4.73 | 197.44 | 217.97 | 0.95 | 1,880 | 1,786 | 3,479 | 0.211 | 300 | uc | 1.23 | 0.43 |  | 0.220 |  | ок! |
| CP1.6 | CP1.7 | 4.30 | 4.30 | 3.10 | 3.01 | 0.09 | 23.00 | 0.004 | 250 | 4.73 | 5.03 | 194.76 | 215.01 | 0.95 | 0 | 0 | 3,479 | 0.208 | 300 | uc | 1.29 | 0.49 |  | 0.282 |  | ок! |
| CP1.7 | мн Tм | 4.30 | 4.30 | 3.01 | 2.97 | 0.03 | 15.00 | 0.002 | 450 | 5.03 | 5.23 | 192.99 | 213.06 | 0.95 | 0 | 0 | 3,479 | 0.206 | 450 | uc | 1.23 | 0.71 |  | 0.503 |  | OK! |
| 2.1 | CP2.2 | 4.30 | 4.30 | 3.70 | 3.60 | 0.10 | 48.00 | 0.002 | 500 | 2.00 | 2.64 | 220.86 | 243.83 | 0.95 | 1,481 | 1,407 | 1,407 | 0.095 | 600 | uc | 1.25 | 0.47 |  | 0.378 |  | ок! |
| CP2.2 | CP2. 3 | 4.30 | 4.30 | 3.60 | 3.50 | 0.10 | 73.00 | 0.001 | 700 | 2.64 | 3.65 | 208.39 | 230.06 | 0.95 | 2,716 | 2,580 | 3,987 | 0.255 | 750 | uc | 1.20 | 0.65 |  | 0.394 |  | ок! |
| CP2.3 | M $\mathrm{TM}^{\text {M }}$ | 4.30 | 4.30 | 3.50 | 3.44 | 0.06 | 42.00 | 0.001 | 700 | 3.65 | 4.23 | 202.31 | 223.35 | 0.95 | O | 0 | 3,987 | 0.248 | 750 | uc | 1.22 | 0.71 |  | 0.467 |  | ОК! |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | total = | 7,859 | 7,466 |  |  |  |  |  |  |  |  |  |  |
| Main Route |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { MHTM } \\ & (\mathrm{CPP} 1.7+ \\ & \mathrm{CP2.3)} \end{aligned}$ | MH1 | 4.30 | 4.20 | 2.00 | 1.94 | 0.06 | 20.00 | 0.003 | 350 | 5.23 | 5.43 | 191.30 | 211.20 | 0.95 | 0 | 0 | 7,466 | 0.438 | 900 | conc. Pipe | 1.67 | 1.06 | 0.96 | 0.517 | 46\% | ок! |
| MH1 | MH2 | 4.20 | 4.20 | 1.94 | 1.83 | 0.11 | 39.00 | 0.003 | 350 | 5.43 | 5.82 | 188.15 | 207.72 | 0.95 | 0 | 0 | 7,466 | 0.431 | 900 | conc. Pipe | 1.67 | 1.06 | 0.96 | 0.524 | 45\% | ок! |
| MH2 | Outfall | 4.20 | 4.20 | 1.83 | 1.81 | 0.03 | 9.00 | 0.003 | 350 | 5.82 | 5.91 | 187.45 | 206.95 | 0.95 | 0 | 0 | 7,466 | 0.430 | 900 | conc. Pipe | 1.67 | 1.06 | 0.96 | 0.526 | 45\% | ок! |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Assessment of Hydraulic Capacities of the Drainage System for 1 in 10 year design return period



$$
g\left(m^{2} s\right)=\quad 9.81
$$



## Assessment of Hydraulic Capacities of the Drainage System for 1 in 50 year design return period



$$
g\left(m^{2} s\right)=\quad 9.81
$$

| USCP/USMH | DSCPIDSMH\| | USGL | DSGL | USIL | DSIL | INVERT DIFF. | $\underset{(\mathrm{m})}{\mathrm{LENGTH}}$ | $\begin{gathered} \mathrm{SLOPE} \\ \mathrm{~s} \end{gathered}$ | $\begin{aligned} & \mathrm{SLOPE}_{1 \mathrm{~N}} \end{aligned}$ | $\overline{t_{0}}$ |  | $\begin{aligned} & \text { RAINFALL } \\ & \text { INTENSITY } \\ & (\mathrm{mm} / \mathrm{hr}) \end{aligned}$ | $\begin{aligned} & \text { RAINFALL INTENSITY } \\ & \text { INCLUDLNG EFFECT } \\ & \text { OF CLIMATE CHANGE } \\ & (\mathrm{mm} / \mathrm{hr}) \end{aligned}$ | $\begin{aligned} & \text { RUNOFF } \\ & \text { COEFF. } \\ & \text { C } \end{aligned}$ |  | $\begin{aligned} & \text { EFF. } \\ & \begin{array}{c} \text { AREA } \\ \left(\mathrm{m}^{2}\right) \end{array} \end{aligned}$ | $\begin{gathered} \hline \text { CUM. } \\ \text { EFF: } \\ \text { AREA } \\ \left(\mathrm{m}^{2}\right) \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { DESIGN } \\ \text { FLOW } \\ \left(\mathrm{m}^{3} \mathrm{~s}\right) \end{gathered}$ | $\begin{aligned} & \hline \text { SIIZE } \\ & (\mathrm{mm}) \end{aligned}$ | $\begin{aligned} & \text { TyC } \\ & \text { Type } \end{aligned}$ | $\begin{aligned} & \substack{\mathrm{VEL} \\ (\mathrm{~m} / \mathrm{s})} \end{aligned}$ | $\begin{gathered} \text { CALOW } \\ \text { CAPACITY } \\ \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{gathered}$ | $\begin{gathered} \text { CLIO } \\ \text { CAPACITY } \\ \text { (for pipe) } \end{gathered}$ | $\begin{gathered} \text { SPPRE } \\ \text { CAPACITY } \\ \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{gathered}$ | $\square$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Branch from A/YL-ST/559 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.1 | CP1.2 | ${ }^{4.30}$ | 4.30 | 3.97 | 3.67 | 0.26 | 65.00 | 0.004 | 250 | 2.00 | 2.89 | 362.61 | 400.32 | 0.95 | 1,003 | 953 | 953 | 0.106 | 300 | UC | 1.22 | 0.22 |  | 0.112 |  | OK! |
| CP1.2 | CP1.3 | 4.30 | 4.30 | 3.67 | 3.60 | 0.07 | 17.00 | 0.004 | 250 | 2.89 | 3.12 | 357.76 | 394.97 | 0.95 | 0 | 0 | 953 | 0.105 | 300 | uc | 1.23 | 0.25 |  | 0.141 |  | OK! |
| CP1.3 | CP1.4 | 4.30 | 4.30 | 3.60 | 3.56 | 0.04 | 10.00 | 0.004 | 250 | 3.12 | 3.25 | 355.03 | 391.95 | 0.95 | 0 | 0 | 953 | 0.104 | 300 | uc | 1.24 | 0.26 |  | 0.159 |  | OK! |
| CP1.4 | CP1.5 | 4.30 | 4.30 | 3.56 | 3.35 | 0.16 | 40.00 | 0.004 | 250 | 3.25 | 3.78 | 344.98 | 380.86 | 0.95 | 779 | 740 | 1,693 | 0.179 | 300 | uc | 1.27 | 0.35 |  | 0.169 |  | OK! |
| CP1.5 | CP1.6 | 4.30 | 4.30 | 3.35 | 3.10 | 0.25 | 70.00 | 0.004 | 275 | 3.78 | 4.73 | 329.07 | 363.29 | 0.95 | 1,880 | 1,786 | 3,479 | 0.351 | 300 | uc | 1.23 | 0.43 |  | 0.080 |  | OK! |
| CP1.6 | CP1.7 | 4.30 | 4.30 | 3.10 | 3.01 | 0.09 | 23.00 | 0.004 | 250 | 4.73 | 5.03 | 324.59 | 358.35 | 0.95 | 0 | 0 | 3,479 | 0.347 | 300 | uc | 1.29 | 0.49 |  | 0.144 |  | OK! |
| CP1.7 | MH TM | 4.30 | 4.30 | 3.01 | 2.97 | 0.03 | 15.00 | 0.002 | 450 | 5.03 | 5.23 | 321.65 | 355.10 | 0.95 | 0 | 0 | 3,479 | 0.343 | 450 | uc | 1.23 | 0.71 |  | 0.365 |  | OK! |
| 2.1 | CP2.2 | 4.30 | 4.30 | 3.70 | 3.60 | 0.10 | 48.00 | 0.002 | 500 | 2.00 | 2.64 | 368.11 | 406.39 | 0.95 | 1,481 | 1,407 | 1,407 | 0.159 | 600 | uc | 1.25 | 0.47 |  | 0.314 |  | ок! |
| CP2.2 | CP2.3 | 4.30 | 4.30 | 3.60 | 3.50 | 0.10 | 73.00 | 0.001 | 700 | 2.64 | 3.65 | 347.32 | 383.44 | 0.95 | 2,716 | 2,580 | 3,987 | 0.425 | 750 | uc | 1.20 | 0.65 |  | 0.224 |  | ок! |
| CP2.3 | MH TM | 4.30 | 4.30 | 3.50 | 3.44 | 0.06 | 42.00 | 0.001 | 700 | 3.65 | 4.23 | 337.18 | 372.25 | 0.95 | 0 | 0 | 3,987 | 0.413 | 750 | uc | 1.22 | 0.71 |  | 0.302 |  | OK! |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | total $=$ | 7,859 | 7,466 |  |  |  |  |  |  |  |  |  |  |
| Main Route |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 4.30 | 4.20 | 2.00 | 1.94 | 0.06 | 20.00 | 0.003 | 350 | 5.23 | 5.43 | 318.83 | 351.99 | 0.95 | 0 | 0 | 7,466 | 0.731 | 900 | conc. Pipe | 1.67 | 1.06 | 0.96 | 0.225 | 76\% | ок! |
| MH1 | MH2 | 4.20 | 4.20 | 1.94 | 1.83 | 0.11 | 39.00 | 0.003 | 350 | 5.43 | 5.82 | 313.59 | 346.20 | 0.95 | 0 | 0 | 7,466 | 0.719 | 900 | conc. Pipe | 1.67 | 1.06 | 0.96 | 0.237 | 75\% | OK! |
| MH2 | Outfall | 4.20 | 4.20 | 1.83 | 1.81 | 0.03 | 9.00 | 0.003 | 350 | 5.82 | 5.91 | 312.42 | 344.91 | 0.95 | 0 | 0 | 7,466 | 0.716 | 900 | conc. Pipe | 1.67 | 1.06 | 0.96 | 0.240 | 75\% | OK! |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Assessment of Hydraulic Capacities of the Drainage System for 1 in 200 year design return period



Using Colebrook's White Equation (for pipe flow)
$v=-$ Sot
(
Parameters Inp
$\mathrm{k}_{\mathrm{s}}(\mathrm{mm})$
$0.6 \quad \mathrm{k}_{\mathrm{s}}(\mathrm{m})=0.0006$
$\begin{array}{ll}\mathrm{k} \\ \mathrm{g}\left(\mathrm{m}^{2} / \mathrm{s}\right)= & 9.81\end{array}$

| USCP/USMH | DSCPIDSMH\| | USGL | DSGL | USIL | DSIL | INVERT DIFF. | $\underset{(\mathrm{m})}{\mathrm{LENGTH}}$ | $\begin{aligned} & \hline \text { SLOPE } \\ & \mathrm{s} \end{aligned}$ | $\begin{aligned} & \text { SLOPE } \\ & 1 \mathrm{IN} \end{aligned}$ | $\begin{gathered} \mathrm{t}_{\mathrm{o}} \\ (\mathrm{~min}) \end{gathered}$ | $\underset{\substack{\left.\mathrm{t}_{\mathrm{c}}=\mathrm{m}_{\mathrm{j}}\right) \\(\min )}}{ }$ | $\begin{aligned} & \text { RAINFALL } \\ & \text { INTENSITY } \\ & (\mathrm{mm} / \mathrm{hr}) \end{aligned}$ | $\begin{aligned} & \text { RAINFALL INTENSITY } \\ & \text { INCLUDDN EFFECT } \\ & \text { OF CLIMATE CHANGE } \\ & (\mathrm{mm} / \mathrm{hr}) \end{aligned}$ | $\begin{aligned} & \text { RUNOFF } \\ & \text { COEF. } \\ & \text { C. } \end{aligned}$ | SUB- CATCHMENT AREA $\left(m^{2}\right)$ | $\begin{gathered} \text { EFF. } \\ \text { AREA } \\ \left(\mathrm{m}^{2}\right) \end{gathered}$ | $\begin{gathered} \hline \text { CUM. } \\ \text { EFF: } \\ \text { AREA } \\ \left(\mathrm{m}^{2}\right) \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { DESIGN } \\ \text { FLOW } \\ \left(\mathrm{m}^{3} \mathrm{~s}\right) \end{gathered}$ | $\begin{aligned} & \text { SIZE } \\ & (\mathrm{mm}) \end{aligned}$ | $\begin{aligned} & \text { TyCe } \\ & \text { Tyy } \end{aligned}$ | $\begin{aligned} & \mathrm{V} \mathrm{VEL} \\ & (\mathrm{~m} / \mathrm{s}) \end{aligned}$ | $\begin{gathered} \text { FAPAW } \\ \text { CAPAITY } \\ \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{gathered}$ |  | $\begin{aligned} & \text { SPARE } \\ & \text { CAPAITY } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$ | $\square$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Branch from AYL-STT/559 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.1 | CP1.2 | 4.30 | 4.30 | 3.97 | 3.67 | 0.26 | 65.00 | 0.004 | 250 | 2.00 | 2.89 | 404.31 | 446.36 | 0.95 | 1,003 | 953 | 953 | 0.118 | 300 | UC | 1.22 | 0.22 |  | 0.100 |  | OK! |
| CP1.2 | CP1.3 | 4.30 | 4.30 | 3.67 | 3.60 | 0.07 | 17.00 | 0.004 | 250 | 2.89 | 3.12 | 398.90 | 440.39 | 0.95 | 0 | 0 | 953 | 0.117 | 300 | uc | 1.23 | 0.25 |  | 0.129 |  | ок! |
| CP1.3 | CP1.4 | 4.30 | 4.30 | 3.60 | 3.56 | 0.04 | 10.00 | 0.004 | 250 | 3.12 | 3.25 | 395.85 | 437.02 | 0.95 | 0 | 0 | 953 | 0.116 | 300 | uc | 1.24 | 0.26 |  | 0.147 |  | ок! |
| CP1.4 | CP1.5 | 4.30 | 4.30 | 3.56 | 3.35 | 0.16 | 40.00 | 0.004 | 250 | 3.25 | 3.78 | 384.65 | 424.65 | 0.95 | 779 | 740 | 1,693 | 0.200 | 300 | uc | 1.27 | 0.35 |  | 0.148 |  | ок! |
| CP1.5 | CP1.6 | 4.30 | 4.30 | 3.35 | 3.10 | 0.25 | 70.00 | 0.004 | 275 | 3.78 | 4.73 | 366.91 | 405.07 | 0.95 | 1,880 | 1,786 | 3,479 | 0.392 | 300 | uc | 1.23 | 0.43 |  | 0.040 |  | ок! |
| CP1.6 | CP1.7 | 4.30 | 4.30 | 3.10 | 3.01 | 0.09 | 23.00 | 0.004 | 250 | 4.73 | 5.03 | 361.92 | 399.56 | 0.95 | 0 | 0 | 3,479 | 0.386 | 300 | uc | 1.29 | 0.49 |  | 0.104 |  | ок! |
| CP1.7 | мн Tм | 4.30 | 4.30 | 3.01 | 2.97 | 0.03 | 15.00 | 0.002 | 450 | 5.03 | 5.23 | 358.63 | 395.93 | 0.95 | 0 | 0 | 3,479 | 0.383 | 450 | uc | 1.23 | 0.71 |  | 0.326 |  | OK! |
| 2.1 | CP2.2 | 4.30 | 4.30 | 3.70 | 3.60 | 0.10 | 48.00 | 0.002 | 500 | 2.00 | 2.64 | 410.44 | 453.12 | 0.95 | 1,481 | 1,407 | 1,407 | 0.177 | 600 | uc | 1.25 | 0.47 |  | 0.296 |  | ок! |
| CP2.2 | CP2. 3 | 4.30 | 4.30 | 3.60 | 3.50 | 0.10 | 73.00 | 0.001 | 700 | 2.64 | 3.65 | 387.26 | 427.54 | 0.95 | 2,716 | 2,580 | 3,987 | 0.474 | 750 | uc | 1.20 | 0.65 |  | 0.175 |  | ок! |
| CP2.3 | M $\mathrm{TM}^{\text {M }}$ | 4.30 | 4.30 | 3.50 | 3.44 | 0.06 | 42.00 | 0.001 | 700 | 3.65 | 4.23 | 375.96 | 415.06 | 0.95 | O | 0 | 3,987 | 0.460 | 750 | uc | 1.22 | 0.71 |  | 0.254 |  | ОК! |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | total = | 7,859 | 7,466 |  |  |  |  |  |  |  |  |  |  |
| Main Route |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { MHTM } \\ & (\mathrm{CPP} 1.7+ \\ & \mathrm{CP2.3)} \end{aligned}$ | MH1 | 4.30 | 4.20 | 2.00 | 1.94 | 0.06 | 20.00 | 0.003 | 350 | 5.23 | 5.43 | 355.50 | 392.47 | 0.95 | 0 | 0 | 7,466 | 0.815 | 900 | conc. Pipe | 1.67 | 1.06 | 0.96 | 0.141 | 85\% | ок! |
| MH1 | MH2 | 4.20 | 4.20 | 1.94 | 1.83 | 0.11 | 39.00 | 0.003 | 350 | 5.43 | 5.82 | 349.65 | 386.01 | 0.95 | 0 | 0 | 7,466 | 0.801 | 900 | conc. Pipe | 1.67 | 1.06 | 0.96 | 0.154 | 84\% | ок! |
| MH2 | Outfall | 4.20 | 4.20 | 1.83 | 1.81 | 0.03 | 9.00 | 0.003 | 350 | 5.82 | 5.91 | 348.35 | 384.57 | 0.95 | 0 | 0 | 7,466 | 0.798 | 900 | conc. Pipe | 1.67 | 1.06 | 0.96 | 0.157 | 84\% | ок! |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |





